Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.344
Filtrar
1.
Nat Commun ; 15(1): 2627, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521787

RESUMO

IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1ß inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Fibrose , Inflamação , Leucócitos Mononucleares/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
2.
Clin Rheumatol ; 43(5): 1531-1540, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507132

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous. The aim of this study is to find the key genes in peripheral blood mononuclear cells (PBMCs) of SLE patients and to provide a new direction for the diagnosis and treatment of lupus. METHODS: GSE121239, GSE50772, GSE81622, and GSE144390 mRNA expression profiles were obtained from the website of Gene Expression Omnibus (GEO), and differential expressed genes (DEGs) analysis was performed by R. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate signaling pathways for the DEGs. Real-time qPCR (RT-qPCR) was used to verify the key gene EPSTI1 in PBMCs of SLE patients. Finally, the correlation analysis and ROC curve analysis of EPSTI1 for SLE were performed. RESULTS: A total of 12 upregulated DEGs were identified, including MMP8, MX1, IFI44, EPSTI1, OAS1, OAS3, HERC5, IFIT1, RSAD2, USP18, IFI44L, and IFI27. GO and KEGG pathway enrichment analysis showed that those DEGs were mainly concentrated in the response to virus and IFN signaling pathways. Real-time qPCR (RT-qPCR) revealed that EPSTI1 was increased in PBMCs of SLE. EPSTI1 was positively correlated with SLEDAI score in SLE patients. Besides, EPSTI1 was positively correlated with T cell activation- or differentiation-associated genes (BCL6 and RORC). Furthermore, ROC analyses proved EPSTI1 may have diagnostic value for SLE. CONCLUSION: Together, EPSTI1 was found to be a potential biomarker for SLE, closely related to T cell immune imbalance. Key Points • EPSTI1 expression was significantly increased in PBMCs of SLE patients. • EPSTI1 was positively correlated with disease activity and T cell activation- or differentiation-associated genes in SLE patients. • EPSTI1 might have a good diagnostic value for SLE.


Assuntos
Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , Humanos , Leucócitos Mononucleares/metabolismo , Biomarcadores/metabolismo , Transdução de Sinais , Diferenciação Celular , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Biologia Computacional , Proteínas de Neoplasias , Ubiquitina Tiolesterase/metabolismo
3.
Mol Cancer ; 23(1): 59, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515149

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are crucial in the targeted treatment of advanced colorectal cancer (CRC). Anlotinib, a multi-target TKI, has previously been demonstrated to offer therapeutic benefits in previous studies. Circular RNAs (circRNAs) have been implicated in CRC progression and their unique structural stability serves as promising biomarkers. The detailed molecular mechanisms and specific biomarkers related to circRNAs in the era of targeted therapies, however, remain obscure. METHODS: The whole transcriptome RNA sequencing and function experiments were conducted to identify candidate anlotinib-regulated circRNAs, whose mechanism was confirmed by molecular biology experiments. CircHAS2 was profiled in a library of patient-derived CRC organoids (n = 22) and patient-derived CRC tumors in mice. Furthermore, a prospective phase II clinical study of 14 advanced CRC patients with anlotinib-based therapy was commenced to verify drug sensitivity (ClinicalTrials.gov identifier: NCT05262335). RESULTS: Anlotinib inhibits tumor growth in vitro and in vivo by downregulating circHAS2. CircHAS2 modulates CCNE2 activation by acting as a sponge for miR-1244, and binding to USP10 to facilitate p53 nuclear export as well as degradation. In parallel, circHAS2 serves as a potent biomarker predictive of anlotinib sensitivity, both in patient-derived organoids and xenograft models. Moreover, the efficacy of anlotinib inclusion into the treatment regimen yields meaningful clinical responses in patients with high levels of circHAS2. Our findings offer a promising targeted strategy for approximately 52.9% of advanced CRC patients who have high circHAS2 levels. CONCLUSIONS: CircHAS2 promotes cell proliferation via the miR-1244/CCNE2 and USP10/p53/CCNE2 bidirectional axes. Patient-derived organoids and xenograft models are employed to validate the sensitivity to anlotinib. Furthermore, our preliminary Phase II clinical study, involving advanced CRC patients treated with anlotinib, confirmed circHAS2 as a potential sensitivity marker.


Assuntos
Neoplasias Colorretais , Indóis , MicroRNAs , Quinolinas , Humanos , Animais , Camundongos , RNA Circular/genética , Proteína Supressora de Tumor p53 , Estudos Prospectivos , MicroRNAs/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Biomarcadores , Ubiquitina Tiolesterase/metabolismo , Ciclinas/metabolismo
4.
Aging (Albany NY) ; 16(6): 5526-5544, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517383

RESUMO

Ubiquitin-specific protease 36 (USP36) has been reported to exhibit oncogenic effects in various malignancies, but the function of USP36 in colon cancer progression remains indefinite. Herein, we aimed to determine the role and mechanism of USP36 in malignant phenotypes of colon cancer cells and explore the potential drug targeting USP36. Bioinformatics analyses indicated that USP36 is highly expressed and significantly related to tumor stages in colon cancer. Besides, USP36 was further up-regulated in oxaliplatin (Oxa)-resistant colon cancer cells. Colony formation, Edu staining, Transwell, wound healing, sphere formation, and CCK-8 assays were conducted and showed that the proliferation, Oxa-resistance, migration, stemness, and invasion of HCT116 cells were promoted after overexpressing USP36, while suppressed by USP36 knockdown. Mechanically, USP36 enhances c-Myc protein stabilization in HCT116 cells via deubiquitination. AutoDock tool and ubiquitin-AMC hydrolysis assay identified cinobufotalin (CBF), an anti-tumor drug, maybe a USP36 inhibitor by inhibiting its deubiquitination activity. CBF significantly prohibited proliferation, migration, invasion, and stemness of HCT116 cells and reversed Oxa-resistance, whereas enforced expression of USP36 blocked these effects. Moreover, in vivo analyses confirmed the oncogenic role of USP36 and the therapeutic potential of CBF in the malignancy of colon cancer. In conclusion, CBF may be a promising therapeutic agent for colon cancer due to its regulation of the USP36/c-Myc axis.


Assuntos
Bufanolídeos , Neoplasias do Colo , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Células HeLa , Proliferação de Células
5.
Front Immunol ; 15: 1353138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529289

RESUMO

Introduction: BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results: In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion: In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.


Assuntos
Linfócitos B , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Animais , Camundongos , Anticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Histonas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
6.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555840

RESUMO

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Assuntos
Ubiquitina Tiolesterase , Ubiquitina , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Ubiquitina/química , Domínio Catalítico , Ubiquitina Tiolesterase/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo
7.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478109

RESUMO

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Assuntos
Células Endoteliais , Traumatismos da Medula Espinal , Animais , Camundongos , Ratos , 60489 , Barreira Hematoencefálica/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Fatores de Transcrição SOXF/genética , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
8.
Breast Cancer Res ; 26(1): 44, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468288

RESUMO

BACKGROUND: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS: Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS: UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION: UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474064

RESUMO

Our previous study has reported that metastasis-associated protein 2 (MTA2) plays essential roles in tumorigenesis and aggressiveness of gastric cancer (GC). However, the underlying molecular mechanisms of MTA2-mediated GC and its upstream regulation mechanism remain elusive. In this study, we identified a novel circular RNA (circRNA) generated from the MTA2 gene (circMTA2) as a crucial regulator in GC progression. CircMTA2 was highly expressed in GC tissues and cell lines, and circMTA2 promoted the proliferation, invasion, and metastasis of GC cells both in vitro and in vivo. Mechanistically, circMTA2 interacted with ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) to restrain MTA2 ubiquitination and stabilize MTA2 protein expression, thereby facilitating tumor progression. Moreover, circMTA2 was mainly encapsulated and transported by exosomes to promote GC cell progression. Taken together, these findings uncover that circMTA2 suppresses MTA2 degradation by interacting with UCHL3, thereby promoting GC progression. In conclusion, we identified a cancer-promoting axis (circMTA2/UCHL3/MTA2) in GC progression, which paves the way for us to design and synthesize targeted inhibitors as well as combination therapies.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo , Proteólise , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Ubiquitina Tiolesterase/metabolismo
10.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547292

RESUMO

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Assuntos
Proliferação de Células , Mitose , Neoplasias , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Humanos , Proliferação de Células/genética , Instabilidade Genômica , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , 60688/metabolismo , Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos
11.
J Med Chem ; 67(6): 4496-4524, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488146

RESUMO

Dysregulation of the ubiquitin-proteasome systems is a hallmark of various disease states including neurodegenerative diseases and cancer. Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is expressed primarily in the central nervous system under normal physiological conditions, however, is considered an oncogene in various cancers, including melanoma, lung, breast, and lymphoma. Thus, UCHL1 inhibitors could serve as a viable treatment strategy against these aggressive cancers. Herein, we describe a covalent fragment screen that identified the chloroacetohydrazide scaffold as a covalent UCHL1 inhibitor. Subsequent optimization provided an improved fragment with single-digit micromolar potency against UCHL1 and selectivity over the closely related UCHL3. The molecule demonstrated efficacy in cellular assays of metastasis. Additionally, we report a ligand-bound crystal structure of the most potent molecule in complex with UCHL1, providing insight into the binding mode and information for future optimization.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Mama , Complexo de Endopeptidases do Proteassoma
12.
Biomed Pharmacother ; 173: 116315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394852

RESUMO

Due to resistance and BCR-ABLT315I-mutated, CML remains a clinical challenge. It needs new potential therapeutic targets to overcome CML resistance related to BCR-ABL. Our research revealed that the deubiquitinating enzyme USP28 was highly expressed in BCR-ABL-dependent CML patients. Similarly, a high expression of USP28 was found in the K562 cell line, particularly in the imatinib-resistant strains. Notably, USP28 directly interacted with BCR-ABL. Furthermore, when BCR-ABL and its mutant BCR-ABLT315I were overexpressed in K562-IMR, they promoted the expression of IFITM3. However, when small molecule inhibitors targeting USP28 and small molecule degraders targeting BCR-ABL were combined, they significantly inhibited the expression of IFITM3. The experiments conducted on tumor-bearing animals revealed that co-treated mice showed a significant reduction in tumor size, effectively inhibiting the progression of CML tumors. In summary, USP28 promoted the proliferation and invasion of tumor cells in BCR-ABL-dependent CML by enhancing the expression of IFITM3. Moreover, imatinib resistance might be triggered by the activation of the USP28-BCR-ABL-IFITM3 pathway. Thus, the combined inhibition of USP28 and BCR-ABL could be a promising approach to overcome CML resistance dependent on BCR-ABL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Humanos , Animais , Camundongos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/metabolismo , Apoptose , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA , Ubiquitina Tiolesterase/metabolismo
13.
Cell Biol Int ; 48(4): 541-550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321831

RESUMO

Osteoporosis is a chronic skeletal disease and the major source of risk for fractures in aged people. It is urgent to investigate the mechanism regulating osteoporosis for developing potential treatment and prevention strategies. Osteogenic differentiation of preosteoblast enhances bone formation, which might be a promising strategy for treatment and prevention of osteoporosis. Protein disulfide isomerase family A, member 3 (PDIA3) could induce bone formation, yet the role of PDIA3 in osteogenic differentiation of preosteoblast remains unknown. In this study, m6 A RNA methylation was detected by methylated RNA immunoprecipitation (MeRIP), while mRNA stability was identified by RNA decay assay. Besides, protein-protein interaction and protein phosphorylation were determined using co-immunoprecipitation (Co-IP). Herein, results revealed that PDIA3 promoted osteogenic differentiation of preosteoblast MC3T3-E1. Besides, PDIA3 mRNA methylation was suppressed by FTO alpha-ketoglutarate dependent dioxygenase (FTO) as RNA methylation reduced PDIA3 mRNA stability during osteogenic differentiation of MC3T3-E1 cells. Moreover, ubiquitin specific peptidase 20 (USP20) improved FTO level through inhibiting FTO degradation while PDIA3 increased FTO level by enhancing USP20 phosphorylation during osteogenic differentiation of MC3T3-E1 cells, suggesting a positive feedback regulatory loop between PDIA3 and FTO. In summary, these findings indicated the mechanism of PDIA3 regulating osteogenic differentiation of preosteoblast and provided potential therapeutic targets for osteoporosis.


Assuntos
Osteogênese , Osteoporose , Humanos , Idoso , Osteogênese/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Retroalimentação , Diferenciação Celular/genética , Osteoporose/metabolismo , Osteoblastos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato
14.
Oncogene ; 43(12): 899-917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317006

RESUMO

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/ß-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.


Assuntos
Anexina A2 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Via de Sinalização Wnt/genética , Neoplasias Esofágicas/patologia , Proliferação de Células/genética , Acetiltransferases/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Histona Acetiltransferases/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Anexina A2/metabolismo
15.
Cell Signal ; 117: 111070, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38307305

RESUMO

Doxorubicin (Dox) is a potent antineoplastic agent, but its use is curtailed by severe cardiotoxicity, known as Dox-induced cardiomyopathy (DIC). The molecular mechanism underlying this cardiotoxicity remains unclear. Our current study investigates the role of Ubiquitin-Specific Protease 36 (USP36), a nucleolar deubiquitinating enzyme (DUB), in the progression of DIC and its mechanism. We found increased USP36 expression in neonatal rat cardiomyocytes and H9C2 cells exposed to Dox. Silencing USP36 significantly mitigated Dox-induced oxidative stress injury and apoptosis in vitro. Mechanistically, USP36 upregulation positively correlated with Poly (ADP-ribose) polymerase 1 (PARP1) expression, and its knockdown led to a reduction in PARP1 levels. Further investigation revealed that USP36 could bind to and mediate the deubiquitination of PARP1, thereby increasing its protein stability in cardiomyocytes upon Dox exposure. Moreover, overexpression of wild-type (WT) USP36 plasmid, but not its catalytically inactive mutant (C131A), stabilized PARP1 in HEK293T cells. We also established a DIC model in mice and observed significant upregulation of USP36 in the heart. Cardiac knockdown of USP36 in mice using a type 9 recombinant adeno-associated virus (rAAV9)-shUSP36 significantly preserved cardiac function after Dox treatment and protected against Dox-induced structural changes within the myocardium. In conclusion, these findings suggest that Dox promotes DIC progression by activating USP36-mediated PARP1 deubiquitination. This novel USP36/PARP1 axis may play a significant regulatory role in the pathogenesis of DIC.


Assuntos
Cardiomiopatias , Cardiotoxicidade , Animais , Humanos , Camundongos , Ratos , Apoptose , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/complicações , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Células HEK293 , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ubiquitina Tiolesterase/metabolismo
16.
Cancer Lett ; 587: 216712, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364962

RESUMO

Gastric cancer (GC) is a common malignant tumor of the digestive tract, and chemoresistance significantly impacts GC patients' prognosis. PANoptosis has been associated with oxaliplatin-induced cell death. However, the direct regulatory role of YBX1 in cellular chemoresistance through PANoptosis remains unclear. In this study, we investigated the impact of YBX1 on regulating PANoptosis and its influence on the resistance of gastric cancer cells to oxaliplatin. Through overexpression and silencing experiments, we assessed YBX1's effect on proliferation and PANoptosis regulation in gastric cancer cells. Additionally, we identified PPM1B and USP10 as interacting proteins with YBX1 and confirmed their influence on YBX1 molecular function and protein expression levels. Our results demonstrate that YBX1 suppresses PANoptosis, leading to enhanced resistance of gastric cancer cells to oxaliplatin. Furthermore, we found that PPM1B and USP10 play critical roles in regulating YBX1-mediated PANoptosis inhibition. PPM1B directly interacts with YBX1, causing dephosphorylation of YBX1 at serine 314 residue. This dephosphorylation process affects the deubiquitination of YBX1 mediated by USP10, resulting in decreased YBX1 protein expression levels and impacting PANoptosis and oxaliplatin resistance in gastric cancer cells. Additionally, we discovered that the 314th amino acid of YBX1 has a profound impact on its own protein expression abundance, thereby affecting the functionality of YBX1. In conclusion, our study reveals the significance of PPM1B-mediated dephosphorylation of YBX1 and USP10-mediated deubiquitination in regulating PANoptosis and sensitivity to oxaliplatin in gastric cancer cells. These findings offer a potential therapeutic strategy for patients with oxaliplatin-resistant gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ubiquitina Tiolesterase/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína Fosfatase 2C/metabolismo
17.
Chem Biol Drug Des ; 103(2): e14431, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38373741

RESUMO

Icariin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the underlying molecular mechanism by which Icariin regulates osteogenic differentiation needs to be further revealed. The viability of BMSCs was assessed by cell counting kit 8 assay. BMSC osteogenic differentiation ability was evaluated by detecting alkaline phosphatase activity and performing alizarin red S staining. The protein levels of osteogenic differentiation-related markers, sirtuin 1 (SIRT1), ubiquitin-specific protease 47 (USP47), and Wnt/ß-catenin-related markers were determined using western blot. SIRT1 mRNA level was measured using quantitative real-time PCR. The regulation of USP47 on SIRT1 was confirmed by ubiquitination detection and co-immunoprecipitation analysis. Icariin could promote BMSC osteogenic differentiation. SIRT1 expression was enhanced by Icariin, and its knockdown suppressed Icariin-induced BMSC osteogenic differentiation. Moreover, deubiquitinating enzyme USP47 could stabilize SIRT1 protein expression. Besides, SIRT1 overexpression reversed the inhibiting effect of USP47 knockdown on BMSC osteogenic differentiation, and USP47 knockdown also restrained Icariin-induced BMSC osteogenic differentiation. Additionally, Icariin enhanced the activity of the Wnt/ß-catenin pathway by upregulating SIRT1. Icariin facilitated BMSC osteogenic differentiation via the USP47/SIRT1/Wnt/ß-catenin pathway.


Assuntos
Flavonoides , Células-Tronco Mesenquimais , Osteogênese , Sirtuína 1 , Humanos , beta Catenina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Flavonoides/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Técnicas de Silenciamento de Genes
18.
BMC Cancer ; 24(1): 237, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383348

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor with strong invasiveness and poor prognosis. Previous studies have demonstrated the significant role of USP14 in various solid tumors. However, the role of USP14 in the regulation of HCC development and progression remains unclear. METHODS: We discovered through GEO and TCGA databases that USP14 may play an important role in liver cancer. Using bioinformatics analysis based on the Cancer Genome Atlas (TCGA) database, we screened and identified USP14 as highly expressed in liver cancer. We detected the growth and metastasis of HCC cells promoted by USP14 through clone formation, cell counting kit 8 assay, Transwell assay, and flow cytometry. In addition, we detected the impact of USP14 on the downstream protein kinase B (AKT) and epithelial-mesenchymal transition (EMT) pathways using western blotting. The interaction mechanism between USP14 and HK2 was determined using immunofluorescence and coimmunoprecipitation (CO-IP) experiments. RESULTS: We found that sh-USP14 significantly inhibits the proliferation, invasion, and invasion of liver cancer cells, promoting apoptosis. Further exploration revealed that sh-USP14 significantly inhibited the expression of HK2. Sh-USP14 can significantly inhibit the expression of AKT and EMT signals. Further verification through immunofluorescence and CO-IP experiments revealed that USP14 co-expressed with HK2. Further research has found that USP14 regulates the glycolytic function of liver cancer cells by the deubiquitination of HK2. USP14 regulates the autophagy function of liver cancer cells by regulating the interaction between SQSTM1/P62 and HK2. CONCLUSIONS: Our results indicate that USP14 plays a crucial role in the carcinogenesis of liver cancer. We also revealed the protein connections between USP14, HK2, and P62 and elucidated the potential mechanisms driving cancer development. The USP14/HK2/P62 axis may be a new therapeutic biomarker for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
19.
Int J Biol Sci ; 20(4): 1492-1508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385089

RESUMO

Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in cholangiocarcinoma (CCA) has not been explored. Herein, based on The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases, we found that ubiquitin-specific protease 21 (USP21) was upregulated in CCA, high USP21 level was associated with poor prognosis. In vivo and in vitro, we identified USP21 as a master regulator of CCA growth and maintenance, which directly interacted with deubiquitinates and stabilized the heat shock protein 90 (HSP90) through K48-linked deubiquitination, and in turn, this stabilization increased HIF1A expression, thus upregulating key glycolytic enzyme genes ENO2, ENO3, ALDOC, ACSS2, and then promoted aerobic glycolysis, which provided energy for CCA cell proliferation. In addition, USP21 could directly stabilize alpha-Enolase 1 (ENO1) to promote aerobic glycolysis. Furthermore, increased USP21 level enhanced chemotherapy resistance to the gemcitabine-based regimen. Taken together, we identify a USP21-regulated aerobic glycolysis mechanism that involves the USP21/HSP90/HIF1A axis and USP21/ENO1 axis in CCA tumorigenesis, which could serve as a potential target for the treatment of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/metabolismo , Proliferação de Células/genética , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Glicólise/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
20.
Mol Med ; 30(1): 32, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424494

RESUMO

BACKGROUND: Endothelial-to-Mesenchymal Transformation (EndMT) plays key roles in endothelial dysfunction during the pathological progression of atherosclerosis; however, its detailed mechanism remains unclear. Herein, we explored the biological function and mechanisms of upstream stimulating factor 1 (USF1) in EndMT during atherosclerosis. METHODS: The in vivo and in vitro atherosclerotic models were established in high fat diet-fed ApoE-/- mice and ox-LDL-exposed human umbilical vein endothelial cells (HUVECs). The plaque formation, collagen and lipid deposition, and morphological changes in the aortic tissues were evaluated by hematoxylin and eosin (HE), Masson, Oil red O and Verhoeff-Van Gieson (EVG) staining, respectively. EndMT was determined by expression levels of EndMT-related proteins. Target molecule expression was detected by RT-qPCR and Western blotting. The release of pro-inflammatory cytokines was measured by ELISA. Migration of HUVECs was detected by transwell and scratch assays. Molecular mechanism was investigated by dual-luciferase reporter assay, ChIP, and Co-IP assays. RESULTS: USF1 was up-regulated in atherosclerosis patients. USF1 knockdown inhibited EndMT by up-regulating CD31 and VE-Cadherin, while down-regulating α-SMA and vimentin, thereby repressing inflammation, and migration in ox-LDL-exposed HUVECs. In addition, USF1 transcriptionally activated ubiquitin-specific protease 14 (USP14), which promoted de-ubiquitination and up-regulation of NLR Family CARD Domain Containing 5 (NLRC5) and subsequent Smad2/3 pathway activation. The inhibitory effect of sh-USF1 or sh-USP14 on EndMT was partly reversed by USP14 or NLRC5 overexpression. Finally, USF1 knockdown delayed atherosclerosis progression via inhibiting EndMT in mice. CONCLUSION: Our findings indicate the contribution of the USF1/USP14/NLRC5 axis to atherosclerosis development via promoting EndMT, which provide effective therapeutic targets.


Assuntos
Aterosclerose , 60483 , Humanos , Camundongos , Animais , Transdução de Sinais , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Regulação para Cima , Fatores Estimuladores Upstream/metabolismo , Fatores Estimuladores Upstream/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...